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Introduction Recently, advanced imaging methods have made it possible to simultaneously record whole-
brain activity in a behaving nematode, C. elegans [1, 2]. This means that we are able to get measurement
of the brain g(x) and behavior h(y) simultaneously (g and h are measurement functions). In abstract terms,
we can write a set of first order differential equations that describe the dynamics of the brain and behavior
and their coupling,

ẋ = F (x, y, t) (1)

ẏ = G(x, y, t), (2)

where F and G are possibly non linear functions of x, y and time t. A natural question arises: how do we
understand the mapping between neural and behavioral dynamics? Can we find an expression for F and G?
Or can we infer the relationship between x and y without having a functional representation of the dynamics?
Which principles can we use (from dynamical systems and information theory) to guide our analysis? In
this project, we will build upon dynamical systems theory, ergodic theory, inference and information theory,
in an attempt to find answers to these questions.

Warm-up. A useful starting point is to review low-order, deterministic dynamical systems and the Lorenz
equation (originally derived as a simpler description of atmospheric turbulence) provides a canonical example:

ẋ = σ(y − x),

ẏ = ρx− y − xz,
ż = xy − bz,

where {σ, b, ρ} are parameters. Though perhaps most famous for its “butterfly” chaotic attractor, the Lorenz
equations are a wonderful laboratory in which to explore many phenomena in nonlinear dynamics and you
might start by demonstrating different attracting trajectories (fixed points, limit cycles, chaos) depending
on parameter choices and initial conditions. For analytical understanding, fix two of the three parameters
{σ = 10, b = 8

3} and see happens as a function of ρ. First, verify that the origin is a fixed point. Use linear
stability analysis to deduce the asymptotic dynamics for ρ < 1? What happens to the stability of the origin
fixed point at ρ > 1? For ρ > 1 (but not too large) are there new fixed points? For more complicated
attractors such as limit cycles and chaos you will need to develop a numerical integration scheme. We also
have some very-finely sampled high resolution simulation data for the Lorenz dynamics on their standard
chaotic attractor if you’re interested in comparing.

Randomness in deterministic dynamics. In the Lorenz system, once we increase ρ above a certain
value, the dynamics become chaotic. What are the signatures of a chaotic dynamical system? Try to follow
the evolution of a pair of neighbors in phase space. How do their trajectories diverge? One of the properties
of a chaotic system is the existence of positive Lyapunov exponents [3, 4, 5]. Try to estimate the largest
Lyapunov exponent (or the entire spectrum of exponents if you’d like!) of the Lorenz system in different
dynamical regimes.

Bonus: Symmetries and Lyapunov Exponents. Lyapunov exponents reflect the symmetries underlying
the dynamics. For example, continuous symmetries lead to the existence of zero exponents. Can you prove
this? Use the calculations in [6] as a guide. In addition, discrete symmetries such as time-reversal symmetry,
or the existence of a symplectic structure can lead to additional structure in the Lyapunov spectrum. Use the
calculations in [7, 6, 8] to prove the existence of a conjugate pairing of Lyapunov exponents in Hamiltonian
systems. What are the consequences of this property? Can you justify Lioville’s theorem from this point of
view? How would the Liouville’s theorem be extended in the presence of dissipation?

Entropy & Determinism. Chaotic dynamics has many similarities with stochastic processes and one
example is the equivalence of the Kolmogorov-Sinai entropy with the Shannon entropy of an appropriately



constructed symbolic sequence. In simple systems, it possible to find a discretization that preserves a one-
to-one mapping with the underlying phase space trajectories. Explore the notion of a generating partition
in simple 1D maps (e.g. tent map, logistic map) and try to estimate the entropy of the generated symbolic
sequence in the chaotic regime. How is this related with the Ising model? Explore this equivalence in
continuous chaotic dynamical systems and how the partition process affects entropy estimation [9, 10]. Can
you derive the asymptotic behavior of the entropy estimates as a function of the partition/resolution? Is there
a relationship between that and the notion of predictive information in the context of learning [11, 12, 13]?

Inverse Physics: Learning Equations of Motion from Data. What if we didn’t know the equations
(the usual case)? Use current ideas from the literature such as [14, 15] to explore how you can learn equations
of motion directly from data. Do it for a system(s) of your choosing! What can inferring these equations
tell you about the system? What are the difficulties and important principles? Why not simply use a deep
network for prediction (e.g. [16, 17])

State Space Reconstruction. In practice, we rarely have access to the original equations of motion, or
even the state of the system. We simply have measurement data from an underlying dynamical system.
In this case, the first step towards understanding the dynamics is to reconstruct the state space (or phase
space as is known in physics) from the available measurements. The concept of state is one of the most
influential ideas in modern physics, almost all the current theories are framed in the phase space, leading
to a geometrization of physics, which can be very useful (for a history of the idea see here [18]). As an
example, consider a simple harmonic oscillator. Working with the phase space variables (x,p) allows for a
description of the system in terms of a simple first order differential equation, which would be second order
if we thought only about x. By constructing the phase space, you get access to a set of variables that are
maximally predictive.

Modern ideas of state space reconstruction build upon seminal results by the mathematician Floris Takens,
who proved that in fairly general conditions it is possible to reconstruct a one-to-one copy of the original
state space using the delays of our measurements alone. Readable references on state space reconstruction
can be found in [19, 4]. When possible, the reconstructed state space preserves all fixed points, limit cycles,
and other limiting sets. As a toy example, consider that we only have noisy measurements of the x variable
of the Lorenz system. Given this measurement reconstruct the state space of the Lorenz system. Try the
exercise again with other variables and report the findings. In particular how does the reconstruction vary
with different measurement functions and reconstruction parameters? How would you measure the quality of
a state space reconstruction? Hint: Think about prediction, and what does a ”good reconstruction” mean
in terms of predictability. Can you use, for example, predictive information as a guide for the reconstruction?

Back to the project questions. Data from [1] can be downloaded from https://osf.io/79ghf/. Using
ideas from dynamical systems theory and information theory, explore the relationship between the dynamics
of the brain and behavior. Essentially, there are two main approaches you can use:
Parametric approach: Find some functional form for F and G and use it to estimate a relationship between
neural and behavioral dynamics. Big questions: Scholz et al. [1] showed that the posture dynamics can be
predicted using the neural activity using a simple linear regression method. Can you recover these results
using a more complete model? Can behavior predict the neurons as well? If so, what is the functional
relationship?
Non-parametric approach: Reconstruct the state space of a single neuron (e.g. AVA) and a body point
(e.g. head), and try to infer the relationship between their dynamics. One way in which you can do that is
through mutual information,

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (3)

What are the challenges of estimating mutual information in the context of a continuous phase space? How
does that depend on the way you choose to discretize? Why should we expect there to be an instantaneous
relationship between neural and behavioral dynamics? Shouldn’t there be a lag time between them? Explore
the possibility of estimating the mutual information between Xt+τ ′ and Yt+τ . Big questions: How does the
estimate of mutual information using a state space representation differ from a simple estimate of the mutual



information between the measurements themselves, g(x) and h(y)? In other words, how important is the fine
scale dynamics and a proper definition of state to neural computation? How does the estimate of the mutual
information depend on the lag times? Given the maximal mutual information between the past behavior
and the current neural activity Imax(Xt, Yt−τ ) and the maximal mutual information between the past neural
activity and the current behavior Imax(Xt−τ , Yt), what is the relative difference between the two? What are
the challenges of using the entire network dynamics and the entire posture? How do we expect the network
dynamics to impact our estimates of mutual information? In other words, at what level of description is
neural computation being done?
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