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1 Phase space and Liouville’s theorem

During this course, you have seen how we can generally use the statistics of
large ensembles to make definitive statements about thermodynamic prop-
erties. But if you think about it, fundamentally, the air in this room is
composed of an Avogadro’s number of particles, each of them with its own
dynamics, so you could imagine trying to describe the system by studying
these trajectories. But we don’t that though do we? In fact, we can somehow
forget about the details of each molecule’s dynamics and still learn relevant
emerging properties of the system: like pressure, temperature, volume, etc.
What is it that allows us to do this? In order to understand this, let’s first
look at the dynamics of a single particle.

In order to study the dynamics of a particle, we essentially look at its position
and momentum: these two variables compose the phase space of the particle.
Let’s generalize the concept of phase space. A dynamical system essentially
consists of a phase space, ~x acted upon by some law of evolution φ,

~̇x = φ(~x, t). (1)

In discrete time, this differential equation can be written as a map, F , that
takes the system from the state ~xt to ~xt+1,

~xt+1 = F (~xt, t). (2)

Therefore, the full state of the system ~x is composed of the set of variables
that allow us to predict the future ~xt+1 from the present ~xt.

To make this notion more concrete, let’s look at a simple one dimensional
classical harmonic oscillator for which, according to Hooke’s law, F = −kx.
Newton’s laws of motion allows us to write down the acceleration as,
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ẍ = − k
m
x (3)

where k is the spring constant, and m is the mass of the oscillator.

Is x alone enough the predict the future of the oscillator? In other words,
is x the state of the system? Well, clearly, in order to predict the next
state of the oscillator we not only need to know its position, but also its
momentum, p = mẋ. If I just give you x you won’t be able to know whether
the oscillator is moving towards or away from the resting state. Including p
in the state of the system allows us to write down Eq. (3) as a system of first
order differential equations,

ẋ =
p

m
(4)

ṗ =− kx,

and therefore the state of the system is composed of {x, p}. In state space,
the full trajectory of the harmonic oscillator looks like Fig. (1). Say we start
by pushing the oscillator to a point xM to the right of the origin, and we
release it. This corresponds to siting at the point (x, p) = (xM , 0). As the
system evolves, the momentum is negative as the oscillator moves towards
the origin, and it moves pass the origin with maximum speed, at the point
(x, p) = (0,−pM). The momentum then starts decreasing as the oscillator
reaches the point (x, p) = (−xM , 0), at which the momentum is 0. Finally,
the oscillator reverses its movement and performs a reflected version of what
we just described.

Figure 1: Phase space of the classical harmonic oscillator. The inset figures
represent different positions of the oscillator: gray represents the ground
state of the oscillator and black is the current position. Arrows indicate the
direction of the flow.
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If we think about a Hamiltonian picture of the dynamics, the notion of
phase space falls naturally from Hamilton’s equations. For each coordinate,
there’s a conjugate momentum, such that,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (5)

For the harmonic oscillator,

H =
p2

2m
+
kx2

2
,

where the first term is the kinetic energy and the second is the harmonic
potential energy. Solving Eq. (5) with this Hamiltonian, we easily get back
Eq. (4), which was obtained simply by thinking principally about the defini-
tion of the state of a dynamical system.

The very notion of a Hamiltonian is fundamental to the understanding of
statistical mechanics. We know that in equilibrium statistical mechanics, the
energy is conserved. In Hamiltonian mechanics, that’s equivalent to saying
that the Hamiltonian has no time dependent term,

Ḣ =
∂H

∂p
ṗ+

∂H

∂x
ẋ+

�
�
�∂H

∂t

Ḣ = ẋṗ− ṗẋ
Ḣ = 0

And thus energy conservation comes from the fact that the Hamiltonian is
time translation invariant. Consider now a system of N particles, each with
their own positions and momenta. The Hamiltonian of the system is thus
H(xi, pi), where i is the index of each of the particles. Therefore, thinking
about the phase space as the collection of all positions and momenta, we
have a 2N dimensional phase space. The high dimensionality of phase space,
combined with the properties of the dynamics, give rise to a probabilistic
description of the system with which we can do statistical mechanics. The
main goal of this lecture is to show how microscopic deterministic laws of
motion can give rise to randomness, and therefore how we can forget about
the fine scale dynamics of the system and learn its emergent thermodynamic
properties using statistical arguments.

Now let’s move on the idea of a flow in phase space. Instead of taking a
certain initial condition and following it in time, let’s imagine all possible
starting points. You can think of it as having points uniformly distributed
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in phase space. The movement of the collection of points is analogous to a
fluid. For the harmonic oscillator, this movement is really simple: all points
move around the origin in the direction of the flow. More generally, for an
arbitrary phase space, we will be interested in seeing how a volume of points
evolves in time for a Hamiltonian flow.
To study volumes changes in phase space, let’s think
about a single particle, with phase space variables
(x, p). Consider an infinitesimal phase space vol-
ume, which is essentially an infinitesimal square of
area dA = δxδp. Moving the top side of the square
moves p by p → ṗdt. If we move the top and the
bottom side together, then we stretch δp by ∂ṗ

∂p
dtδp:

it’s a change in p of a change in t. Therefore, the
total change in volume in the p direction is

dAp =
∂ṗ

∂p
δpdtδx,

the base times the height of the infinitesimal square. In much the same way,
we can describe the change in the x direction as

dAx =
∂ẋ

∂x
δxdtδp

Therefore, the total change in volume is,

dA =

(
∂ṗ

∂p
+
∂ẋ

∂x

)
δpδxdt (6)

Filling in Hamilton’s equations, Eq. (5), we get,

dA =

(
− ∂H

∂p∂x
+

∂H

∂x∂p

)
δpδxdt (7)

dA = 0

This is Liouville’s theorem: in a Hamiltonian dynamical system, phase space
volumes are conserved by the flow.

2 Second law of thermodynamics and conser-

vation of phase space volumes

As we have seen, according to Liouville’s theorem, if we take some initial
volume in phase space V and act upon it with the dynamics, this volumes
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stays constant. In other words, if we take a ball of points and evolve it in
time, it might get distorted, but the volume stays preserved.

Figure 2: Phase space volume conservation. If we evolve a ball of points in
time according to the dynamics, the phase space volume will generally stretch
and contract along different directions, while preserving the total volume.

What does this mean for entropy? Let’s assume that we have a uniform
distribution of states in a phase space region, the leftmost in Fig. (2). In
the context of the microcanonical ensemble, for which all states are equally
probable, we define the entropy as

S = kB lnΩ, (8)

where Ω represents the number of microstates, kB is the Boltzmann constant
and ln represents the natural logarithm. In a continuous phase space, you
can think of Ω as tiling the phase space volume into a collection of small
patches, and counting how many times the systems visits each of these coarse-
grained states. Therefore, the generalization of the number of microstates in
a continuous state space is the phase space volume, such that the entropy
can be written as

S ∝ lnV. (9)

According to Liouville’s theorem, as the system evolves, the phase space vol-
ume is preserved, implying that the entropy of the system stays preserved.
Well, this is clearly inconsistent with the second law of thermodynamics, that
states that any irreversible process is one that increases the system’s entropy.
If I spray perfume on a corner of the room, the perfume molecules will eventu-
ally distribute themselves around the room in an irreversible way. However,
the dynamics of each molecule is perfectly deterministic and Newtonian me-
chanics tell us that we should be able to precisely reverse the trajectory of
each individual particle and push it back into the perfume container. But
we never observe that do we? Classical mechanics seems to be at odds with
thermodynamics and statistical mechanics. It is both inconsistent with the
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irreversibility of thermodynamic processes and with the second law of ther-
modynamics. Let’s try to understand this apparent contradiction, through
the understanding of chaos.

3 A game of billiards

To illustrate chaos, let’s play a game of dissipationless billiards. Imagine
a billiards table that is absolutely frictionless, and in which the balls are
perfectly reflected when they collide with each other or with the walls of the
table, which have no holes, Fig. (3).

Figure 3: The game of dissipationless billiards. In this game, the table has
no friction, there are no holes, and the balls are perfectly reflected upon
collision. A tiny imprecision in the angle at which the cue ball is shot (white
ball) can make a dramatic difference in the overall trajectory after just a few
collisions: errors grow exponentially.

If we have infinite precision in the speed and orientation at which we
shoot the cue ball (in white), we know precisely how the game will unravel.
If we make a tiny mistake, however, the trajectory of the system will depart
from the original one, and at each collision the errors will grow exponentially.
Therefore, the system is extremely sensitive to the initial conditions, which
is one of the properties of a chaotic system. Most systems, given enough
complexity, exhibit this kind of behavior. To make the notion of chaos more
precise, let’s look at a canonical example: the logistic map.

4 Chaos: the logistic map

The billiards game can be described in terms of a discrete dynamical evo-
lution, a map, in which the position of the ball changes in discrete jumps
from collision to collision. In order to simplify, we will study instead a one
dimensional map: the logistic map,
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xt+1 = µxt(1− xt). (10)

The logistic map is a simple model of the evolution of a population level,
which varies between 0 and 1, where the parameter µ governs the growth
rate: the first term µxt is analogous to the probability of growth, and (1−xt)
is the probability of decay.

Figure 4: Trajectories of the logistic map for varying growth rates: µ = 1.0
(A), µ = 3.4 (B), µ = 3.5 (C).

A simple way of visualizing the trajectory of a map is to make a cobweb
plot: at each iteration, we take xt to F (xt), and then draw a line from F (xt)
to the diagonal to get the new location of x and iterate this process. Fig. (4)
shows sample cobweb plots for different growth rates of the logistic map. As
you can see, for µ = 1 the logistic map flows towards to origin, which is
a fixed point of the map. Fixed points are points in phase space that are
mapped to themselves (unchanged by the dynamics): x∗t+1 = x∗t . Solving

x∗t = µx∗t (1− x∗t ),

it is easy to show that the fixed points of the logistic map are

x∗ = 0

x∗ = 1− µ−1.

Notice that in Fig. (4B,C) the trajectory doesn’t flow towards a trivial fixed
point: it oscillates between two values. To understand the behavior of the
trajectories, we need to discuss the stability of the fixed points. If a fixed
point is stable, small perturbation will quickly decay back to the fixed point.
On the other hand, for an unstable fixed point, small perturbations grow and
the systems moves away from the fixed point. If we push the system away
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from a fixed point by δx � 1, the Taylor expansion around the fixed point
yields x∗ + F ′(x∗)δx + O((δx)2). This means that for the perturbation to
decay we need |F ′(x∗)| ≤ 1, while |F ′(x∗)| > 1 yields unstable trajectories.
Therefore in order to know whether the fixed point is stable or unstable, we
need to look at F ′(x∗),

F ′(x) = µ(1− 2x).

At the origin, x∗ = 0, we have F ′(0) = µ: the origin is stable for µ ≤ 1
and unstable for µ > 1. For x∗ = 1−µ−1, we have F ′(1−µ−1) = 2−µ, which
is stable when 1 ≤ µ ≤ 3, and unstable otherwise. That is why in Fig. (4B,C)
the trajectory never settles onto x∗ = 1− µ−1, but instead oscillates around
it.

5 Coarse-graining, entropy and

predictability

Let’s now think about the dynamics of the logistic map in a different way.
Instead of assuming we have infinite precision, let’s be more realistic and
assume that we have can only know the values of the logistic map up to
some finite precision (say a few decimal points). This is equivalent to dicing
the phase space into small little bins, and therefore obtaining a coarse-grained
description of the dynamics. In fact, let’s simply split the phase space into
two bins: if x < 0.5 we label it L, if x ≥ 0.5 we label in R (the left and right
sides of phase space).

The question now is: how well can we predict the next coarse-grained
state of the system, given the current state? In other words, if I am now in
the L state, can you give me a estimate of the likelihood of the next state
being L or R? Well, if we look at the examples of Fig. (4), we see that the
sequence of states is

Example Sequence of states
A R L L L L L L L L L L L L L ...
B L R L R L R L R L R L R L R ...
C R L R R R L R R R L R R R L ...

Table 1: Sequences of states on the example in Fig. (4).

In example A it is trivial to predict the next state of the system. Given
the first n− 1 states, we would predict that the n-th state is L with almost
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100% probability: the system is falling into a fixed point, which is also known
as a period-1 orbit. In much the same way, in example B, we would predict
that the next state is L, given the fact that the system has been oscillating
between left and right and the sequence RL appears repeatedly: period-2
cycle. In example C, we can also predict that the next state will be R, given
that the system repeats the sequence LRRR multiple times: period 4 cycle.
In these regimes the logistic map is thus predictable.

5.1 Entropy and predictability

Let’s now make a connection between the concepts of predictability and
entropy. Recall the definition of entropy in the microcanonical ensemble,
Eq. (8), for which all states are equally likely and, therefore, the probabil-
ity of each state equals p = 1/Ω. More generally though, as we know for
the canonical ensemble, the probability of each state may depend on other
properties of the system. Therefore, a more general definition of entropy is,

S =
∑
i

−pi ln pi. (11)

The units of entropy are nat if we use the natural logarithm, or bit if we
use a log2 basis. This definition of entropy was introduced by Shannon,
in a seminal paper entitled “A Mathematical Theory of Communication”
[1]. The entropy of a probability distribution essentially measures how much
spread there is in the distribution. If among all states there is only one
with probability p(s) = 1, meaning that the probability distribution is a
delta function p(x) = δ(x − s), then the entropy of the system is S = 0
and we can precisely define the state of the system. On the other hand, if
all states are uniformly distributed, such that p(s) = 1/Ω, we recover the
expression for the entropy of the microcanonical ensemble, Eq. (8) (up to the
Boltzmann constant). In exactly the same fashion, you can also show that if
p is a Boltzmann factor, then Eq. (11) resolves to the entropy in the canonical
ensemble.

Let’s now go back to our logistic map. We can think of predictability as
the spread in the likelihood of finding the system in the state st+1 = j, given
that the current state of the system is st = i.

h = S(p(st+1 = j|st = i))

In other words, if I am in state st = L, and the probability of the next state is
p(st+1 = R) = 1, then the system is totally predictable and we get an entropy
of 0. If, on the other hand, there is some degree of unpredictability of the
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next state of the system, such that the probability of falling into states L and
R is distributed across both states according to some probability distribution,
then we get non zero entropy and the system becomes unpredictable. You
can also think of unpredictability as the rate at which entropy grows as we
increase the size of the sequence,

h = lim
N→∞

1

N
S(p(sN)) (12)

where sN is the sequence of length N . The units of entropy rate h are
nat/symbol if we use a natural log, or bit/symbol is a log2 basis is used. In a
predictable system, for example that of Fig. (4A), we see that as we increase
the sequence size, the probability of finding that sequence (which is R, RR,
RRR, etc.) anywhere in the full string of states is exactly one, and therefore
the entropy rate is 0: the system is entirely predictable. In example Fig. (4B),
the system oscillates between the left and right state, and therefore the prob-
ability of finding RL and LR is equal, p(RL) = 0.5, p(LR) = 0.5. Increasing
the size of the symbol sequence to 3, we also find two sequences, LRL and
RLR, with equal probability and therefore the S(p(s3)) = S(p(s2)). As we
keep on increasing the size of the sequence, the entropy stays unchanged
and, therefore, the entropy rate, or the unpredictability, as we take the limit
N → ∞ goes to h = 0nat/symbol. Likewise, in the example of Fig. (4C),
since we have a repeated sequence (a period-4 cycle), the entropy rate is also
going to tend to 0. If the dynamics exhibits a cyclic behavior, for which
a sequence of states is repeated in a predictable fashion, the entropy rate
vanishes.
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5.2 Entropy and chaos

Figure 5: Cobweb plot
of the logistic map for
µ→ 4.

Let’s now look at what happens when we push the
growth rate to µ → 4. The obtained sequence, in
this example, is

RRRLLLRRRRLRRLRLRLLL.

Can you know predict what the next letter is
going to be? It turns out you can’t, the trajectory
is unpredictable. If the next state is completely un-
predictable, then at any given sequence size, N , all
sequences are possible. For sequences of length 1,
we have s = R or s = L, for N = 2 we have four
possibilities: s = RR, s = LL, s = LR, s = RL,
for N = 3 we have eight possibilities: s = RRR,
s = RRL, s = RLL, s = LLL, s = LLR, s = LRR,
s = LRL, s = RLR, so the number of allowed se-
quences grows with 2N (for each element in the se-
quence of length N we have two possibilities, thus
2N). Therefore, the entropy rate is

h = lim
N→∞

1

N

∑
2N

− 1

2N
ln
(
2−N

)
h = lim

N→∞

1

N
N ln 2

h = ln 2nat/symbol

As we have showed in the lecture, it is simple to simulate the logistic
map: an example simulation can be found in LogisticMap Simulator.ipynb.
Using the simulation, and partitioning the phase space into L and R, it is
easy to get an estimate of the entropy rate using Eq. (12). Doing so, we find
h ≈ ln 2nat/symbol = 1 bit/symbol for µ→ 4. Therefore, as we increase the
growth rate µ, the system undergoes a cascade of period doubling bifurca-
tions, and reaches chaotic behavior when essentially the period of the cycle
diverges to infinity. In this scenario, we turn a deterministic law of evolution
into a random number generator that is essentially indistinguishable from a
coin toss experiment.

5.3 Chaos and thermodynamics

What does this mean for the system? Well, on the one hand, when the
dynamics is chaotic, its behavior becomes random and irreversible. On the
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other hand, as you can see in Fig. (5), the systems visits all of phase space.
As we have stated before, most system are chaotic. If we think back about
the example of the perfume molecules spreading across the room in terms of
a game of billiards with an Avogadro’s number balls, it is easy to understand
that the dynamics of the molecules is extremely chaotic. Being chaotic, as in
the logistic map, the dynamics will push the system to populate the entire
phase space.

Let’s bring back the example of Fig. (2). In a Hamiltonian system, Liou-
ville’s theorem enforces that the phase space volume stays fixed as the system
evolves. This is true for chaotic Hamiltonian systems, but the phase space
volume becomes fractal, and branches out in all directions, filling phase space
like a large piece of cotton. In a real physical system, we never have abso-
lute precision over the exact position of a point in phase space. Instead, we
should think about the phase space as a collection of coarse-grained little
boxes. If that is the precision at which we can observe the system, then as
the dynamics turns the phase space volume into a fractal, the effective vol-
ume spanned by the coarse-grained phase space grows as the system evolves,
in an irreversible fashion, and therefore the entropy does increase. So chaotic
dynamics plays a dual role in the relationship between classical mechanics
and statistical mechanics/thermodynamics. On the one hand, it generates
randomness from deterministic laws of evolution, such that we can achieve an
accurate description of the system from a probabilistic/statistical perspec-
tive, without having to worry about the details of the underlying dynamics.
On the other hand, chaotic dynamics makes the phase space volume evolve
into a fractal, such that the effective coarse-grained entropy of the system
increases, in accordance with the second law of thermodynamics.

6 Ising spins and entropy

The Hamiltonian (energy) of the Ising model in one dimension, can be written
as,

H = −ε
∑

neighboring
pairs i,j

sisj, (13)

where ε is the mutual interaction energy, and si represent the state of a spin,
which is either up (si = 1) or down (si = −1). The partition function of the
1D Ising model, Eq.(8.43) in Schröder, is
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Z ≈ (2 cosh βε)N , (14)

where β = (kBT )−1, and N is the number of spins.

What is the entropy of this one dimensional chain of spins? Using the ther-
modynamic identity for the Helmotz free energy, we have

F = 〈E〉 − TS, (15)

and from this we can easily get the entropy. The average energy is simply

〈E〉 = − ∂

∂β
lnZ = −Nε tanh (βε), (16)

and the free enery, F , is

F = − lnZ

β
= −N

β
ln(2 cosh βε). (17)

Therefore we can write an expression for the entropy per spin, S/N , as,

1

kB

S

N
= ln(2coshβε)− βε tanh(βε). (18)

If we focus on the high T limit, β → 0, Eq.(18) reduces to,

1

kB

S

N
= ln 2nat/spin (19)

Given a sequence of spins, can we use Eq. (12) to estimate the entropy
per spin? Let’s simulate a 1D Ising chain using the Metropolis-Hastings
algorithm, Fig. (6), IsingModel Simulator.ipynb (we take ε = 1 and kB = 1).
For more details on the implementation of the algorithm, see [2].

Figure 6: Final configuration, after 106 iterations, of a 1D spin chain using the
Metropolis-Hastings algorithm with the Ising Hamiltonian, Eq. (13). Black
represents spins in the “up” configuration, while white represents spins in
the “down” configuration. At T=100, the spins assume random orientations.
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Given the sequence of spin configuration, we can, as in the logistic map,
estimate the entropy rate, or the entropy per state, h, which in this case will
be the entropy per spin, S/N . Using the exact same method we have used
to estimate the entropy rate of the logistic map, we obtain,

S

N
≈ 0.692781 ≈ ln 2nat/spin, with T = 100

Therefore, using a simulation of a one dimensional chain of Ising spins,
and estimating the entropy rate through counting the sequences of length N
while taking N → ∞, we are able to recapitulate the analytical result that
S/N → ln 2nat/symbol as T →∞. Also, you can see that the entropy rate
of the high temperature 1D Ising model is equivalent to that of the logistic
map for µ→ 4, due to the fact that, in both cases, the system assumes any
random configuration and therefore all sequences are equally probable and
we obtain h = ln 2nat/symbol = 1 bit/symbol

Conclusion

In today’s lecture, we have tried to highlight the intricate connections be-
tween classical mechanics and statistical mechanics, using the concepts of
chaos and entropy as a guiding principle. We have seen how randomness can
emerge from deterministic laws of motion, and how chaos gives rise to frac-
tal phase space volumes and therefore to an increase in the coarse-grained
entropy of the system, in accordance to the second law of thermodynamics.
In addition, we have generalized the concept of entropy in the context of
dynamical systems, specifically with the logistic map, and we have seen how
the notions of entropy and predictability are related. Finally, we have used
the 1D Ising model to show how we can estimate thermodynamic entropies
using the same notion of entropy that allowed us to estimate the degree of
unpredictability of a dynamical system.
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